

ロボットのための 3次元物体認識研究の現状と展望

~ 生産・物流から生活支援まで ~

中京大学 工学部 橋本 学

mana@isl.sist.chukyo-u.ac.jp http://isl.sist.chukyo-u.ac.jp/

本日の話題

- 1. ロボットビジョンの課題
- 2. 現状: 3次元センサ
- 3. 現状:特定物体ハンドリングのための物体認識
- 4. 現状:柔軟なロボット動作のための物体認識
- 5. ARCとWRSにみる実課題への対応
- 6. 展望: タスク生成のための物体認識
- 7. ロボットビジョン利用拡大のための課題

ロボットビジョンの利用分野

ロボットビジョンの基本問題

どこに, なにがある? ------ どう掴む?

生産・物流・家庭分野における物体認識の課題

ロボットビジョンの基本構成

ロボットビジョン = 3次元センサ + 物体認識(アルゴリズム)

3次元センサの分類 (光学センサ)

青: 文献例 緑: 商品例

	パッシブ	アクティブ
三角測量	ステレオ視 (2眼,3眼,多眼) Bumblebee 2 / X83 (Point Grey 2006 / 2007) TVS (三次元メディア 2011) SV-M-S1 (リコー) Bumblebee2 SV-M-S1	 光切断法(スポット光) TDS-A (パレステック 1997) 光切断法(スリット光) YIVID9i (KONICA MINOLTA 2004) 空間コード化法 [Posdamer1982], [Sato1985] Cartesia (SPACEVISION 2004) MELFA-3D Vision (三菱電機 2013) RV1100 (キャノン) ランダムドットパターン投光法 [Hashimoto1999] Xtion PRO LIVE (ASUS 2011) Leap Motion (Leap Motion 2012) ASTORA (Orbbec 2016) SR300 (Intel 2016) RZテレオ+パターン投光法 R200 (Intel 2015) D415 (Intel 2018) ENSENSO N35 (IDS 2015) 位相シフト法 [Halioua1989], [Zhao1994]
同軸測量	Shape(depth) from (De) Focus [Hiura1999] Shape from Motion	TOF: Time Of Flight Swiss Ranger SR3000 / SR4000 (MESA 2005 / 2008) D-Imager (パナソニック2010) DepthSense325 (SoftKinetic2012) Kinect v2 (Microsoft 2014) 照度差ステレオ [Woodham1980] Kinect v2

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

7

3次元センサの比較

販売開始年度順

	Kinect V2	ENSENSO	R200	Astra	SR300	D415	D435
		000		0, 00			
メーカ名	Microsoft	iDS	Intel	Orbbec	Intel	Intel	Intel
型番	GT3-00005	N35-804-16-IR	82634DSB2P	Orbbec Astra	82535IVCQSPL04N	82635ASRCDVKHV	82635AWGDVKPRQ
販売時期	2014	2015	2015	2016	2016	2018	2018
概略価格	2万1578円	約80万円	約1万9000円 (開発ツール セット料金)	約1万7000円	約1万8000円	約2万2677円	約2万4400円
デプス解像度	512x424	1280x1024	628x468	640x480	640x480	1280x720	1280x720
撮影範囲 (角度・距離)	水平70°× 垂直60°			水平60°x 垂直49.5°		水平69.4°x 垂直425.°x 斜め77°	水平91.2°x 垂直65.5°x 斜め100.6°
	0.5~4.5m	0.3~3.0m	0.5~3.5m	0.6~8.0m (最適0.6~5.0m)	0.2m~1.5m	0.3m~10m	0.2m~10m
計測形式	Time of Flight	Stereo + Light Coding	Stereo + Light Coding	ランダムドット パターン (Light Coding)	ランダムドット パターン (Light Coding)	Stereo + Light Coding	Stereo + Light Coding
インター フェイス	USB 3.0	Ethernet	USB 3.0	USB 2.0	USB 3.0	USB 3.0	USB 3.0
電源	0	0	×	×	×	×	×

3次元センサの比較

3次元センサの比較

撮影シーン コップ 蝶番 像 像 ビン (***(P))(P)(*****)	Kinect v2 (Microsoft)	ENSENSO (iDS)	R200 (Intel)
(範囲) (SPCC) (石膏) (魚) (这明) 「「「」」 「」」 「」」 「」」 「」」 「」」 「」」			The Part
ASTRA (Orbbec)	SR300 (Intel)	D415 (Intel)	D435 (Intel)

【所感】

- 拡散表面物体については ENSENSO による計測が高品質
- 全体的に情報欠落が少ないのは D415・D435, 逆に多いのはSR300(鏡面・黒色部分)である.
- 平面安定性が高い(平面が平面として計測される)のは ENSENSO・ASTRA である.逆に低いのは D415・D435 である.
- 黒い物体に対する計測制度は D415・D435 が高い.
- 死角が少ないのは Kinect v2・ENSENSO・SR300 である.

ポイントクラウドテータ(3次元点群)					
■ xyz 3 次元座標系におけるデータ点の集合					
代表的な点群のデータ構造(.pc	d) PCLで	定義されたフォー	-マット		
ヘッダー情報 1 # .PCD v0.7 - Point Cloud Data file format+ 2 VERSION 0.7+ 3 FIELDS x y z+ 4 SIZE 4 4 4+ 5 TYPE F F F+ 6 COUNT 1 1 1+ 6 COUNT 1 1 1+ 7 WIDTH 307200+ 9 VIEWPOINT 0 0 0 1 0 0 0+ 10 POINTS 307200+ 11 DATA ascii+ 12 -0.600861 0.449636 1.00000+ 13 -0.598983 0.449636 1.00000+ 14 : : : : : : : : : : : : : : : : : : :					
点群情報 { 11 DAIA ascii↓ -0.600861 0.449636 1.000000↓ 12 -0.598983 0.449636 1.000000↓ 14 15 : : : :	307200 行 Kinec によう	t v2, RealSense は って .pcd ファイル刑	, PCL を用いること ^じ 式で保存可.		
点群情報 12 -0.600861 0.449636 1.000000↓ 13 -0.598983 0.449636 1.000000↓ 14 15 ::::		tt v2, RealSense は って .pcd ファイル刑 距離画像	, PCL を用いること ド式で保存可. 3 次元点群		
点群情報 は 正離画像と点群データ	307200 行 Kinec によう 隣接点への アクセス方法	tt v2, RealSense は って.pcd ファイル用 距離画像 データが整列されてい るので隣接データへの 連続アクセスが容易.	 , PCL を用いること ジ式で保存可. 3 次元点群 データが整列されていな いので最近傍探索が必要. 		
点群情報 □ 距離画像と点群データ □ 距離画像と点なすーク	307200 行 Kinec によう 隣接点への アクセス方法 デプス解像度	tt v2, RealSense は って.pcd ファイル州 距離画像 データが整列されてい るので隣接データへの 連続アクセスが容易. 値が濃度値分解能に よって離散化される.	 PCL を用いること 式で保存可. 3 次元点群 データが整列されていないので最近傍探索が必要. 一般には離散化されない. 実空間データが利用可能. 		
点群情報 「 古 二 二 二 二 二 二 二 二 二 二 二 二 二	307200 行 Kinec によう 際接点への アクセス方法 デプス解像度 主な表示ツール	t v2, RealSense は って.pcd ファイル研	 PCL を用いること 式で保存可. 3 次元点群 データが整列されていないので最近傍探索が必要. 一般には離散化されない. 実空間データが利用可能. OpenGL, Mesh Lab, CloudCompare, PCL の Viewer など 		
点群情報 点群情報 道 二 二 二 二 二 二 二 二 二 二 二 二 二	307200 行 Kinec 隣接点への アクセス方法 デプス解像度 主な表示ツール 利用可能なオープン ソースライブラリ	t v2, RealSense は って.pcd ファイル州	 PCL を用いること 式で保存可. 3 次元点群 データが整列されていないので最近傍探索が必要. 一般には離散化されない. 実空間データが利用可能. OpenGL, Mesh Lab, CloudCompare, PCL の Viewer など Point Cloud Library (PCL), OpenGL, OpenGD, 		

①特定物体認識

キーポイントマッチングの基本(特徴量マッチング)

実験① 特徴量の次元数と認識性能

【実験方法】

実験データ: Stanford models の "Dragon" で構成

特徴量: SHORT 特徴量 54 次元(6 シェル x 9 ビンのヒストグラム)からランダムに要素を抽出 (特徴量の次元数=ランダム抽出数)

実験② キーポイント検出方法と認識成功率の関係

【実験方法】

SHORT 法: **凸形状の点だけを**キーポイントとして検出 ランダム法:**ランダムに**キーポイントを検出

【実験結果】

キーポイントの選び方が性能を左右する.

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

17

実験③ キーポイント数と認識性能の関係

【実験方法】

実験データ: Stanford models の "Dragon" で構成 キーポイント: SHORT 法によって検出された点からランダムに選択 S.Takei, S.Akizuki, M.Hashimoto, "SHORT: A Fast 3D Feature Description based on Estimating Occupancy in Spherical Shell Regions", IVCNZ, 2015. (実験結果) 200 200 200 180

2つのタイプの3次元特徴量

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

19

主な3次元特徴量

特徴量の記述方法				
(A) キーポィ	ント周りの	の情報記述	(B) 複数点間の関係記述	
座標データ利用	法線ベ クトル 利用	その他の情報 を利用	2点間 or 3点間	
<u>SHOT,</u> <u>PFH,</u> CSHC B-SHOT, HONV)T,	LSP, CCDoN, <u>NARF,</u>	PPF, ER, VC-PPF, MPPF,	
<u>SI</u> , SSI, DAI, <u>FPFH</u> , <u>RoPS</u> <u>3DSC</u> , SDLSD, <u>USC</u> <u>DoN</u>		VPM		
 PFH : Point Feature Histogram SHOT : Signature of Histograms of OrienTations CSHOT : Color SHOT B-SHOT: Binary SHOT HONV : Histogram of Oriented Normal Vector SI : Spin Image SSI : Spherical Spin Image DAI : Depth Aspect Image 3DSC : 3D Shape Contexts USC : Unique Shape Context 	DSC, SDLSD, USCDON: Point Feature Histograms of OrienTationsSDLSD : Scale-Dependent Local Shape Descriptor: Signature of Histograms of OrienTationsSPFH : Fast PFH: Color SHOTDoN : Difference of NormalsT: Binary SHOTLSP : Local Surface Patches: Histogram of Oriented Normal VectorCCDoN : Combination of Curvatures and Difference of Normals: Spin ImageNARF : Normal Aligned Radial Feature: Spherical Spin ImageNARF : Rotational Projection Statistics: JD Shape ContextsEnter the state of		PPF : Point Pair Feature ER : Efficient Ransac VC-PPF : Visibility Context PPF MPPF : Multimodal PPF PPF B2B or S2B or L2L : PPF Boundary-to-Boundary or Surface to Boundary or Line to Line VPM : Vector Pair Matching	

SHOT 特徴量(Signature of Histograms of OrienTations)

特徴記述

- キーポイント周辺(サポート球内)を分割する(局所座標系を利用). xy 平面で2分割,球内を中心部と周辺部に2分割,さらに, z 軸まわり8分割. (→2x2x8 = 32分割)
- 基準点の法線 r と、分割された32個のスペース内の法線ベクトル群 n_i との内積値を計算し、 m ビンのヒストグラムを作成(cosθ値). (m=11)

球の半径を変えながら同様の計算をおこない、多くの半径から支持された候補点を、最終的なキーポイントとして選択する.

利点

- ヒストグラム特徴なので,多少の外乱には頑健.
- 次元数がある程度高いので,モデルの表現力も高い.

参考文献: R. B. Rusu, et al., "Aligning Point Cloud Views using Persistent Feature Histograms", IEEE Proc. IROS, pp.3384-3391, 2008.

PFHの改良・・FPFH 特徴量(Fast Point Feature Histograms)

PPF 特徵量(Point Pair Feature)

物体上の 全ての点から構成される2点対を利用する.

マッチング

- 4次元特徴量が類似する PPF を探索.
 (ハッシュテーブルを活用して効率化)
 - それらの幾何変換パラメータを計算する.

利点

 部分的なマッチング結果を集積し、多数決処理を適用するので、 部分的な隠れに頑健.

参考文献: B. Drost, el al., "Model Globally, Match Locally: Efficient and Robust 3D Object Recognition", CVPR, pp.998-1005, 2010.

PPF 特徴量の改良 B2B, S2B, L2L

出典: C. Choi, el al., "Voting-Based Pose Estimation for Robotic Assembly Using a 3D Sensor", IEEE Proc. ICRA, pp.1724-1731, 2012.

ashimoto Laboratory,	Chukyo University
----------------------	-------------------

Н

RSJ ロボット工学セミナー May 29, 2019

25

SHOT と PPF の比較

	タイプ(A) SHOT (キーポイント周辺の情報記述)	タイプ(B) PPF (複数キーポイント間の関係)
特徴量の次元数	352	4
特徴量の アイデンティティ	特徴ベクトルの 次数が高い (ア イデンティティが高い)ので, <mark>誤照合は少ない.</mark>	単体ではSHOTよりもアイデン ティティが低いが, <mark>投票処理</mark> (統 計処理)によって解決している例 が多い.
外乱への耐性 =再現性 (Repeatability)	ヒストグラムベースの特徴量な のでノイズには強い.	物体全面にばらまかれた多数の点 対(全点からの2点組み合わせ) を用いるので,オクルージョンに は強い傾向あり.
照合に使用する 特徴点数	特徴量の次元数が高いので, 一般には少数で足りる. →少数しか使わないので,オク ルージョンには弱い.	多数のPPFを使う必要あるので, 高速化のためには, マッチング時 の工夫が重要(ハッシュテーブル 利用等).
処理時間	特徴量次数と特徴点数の両方が関 ばら積み物体認識の場合は,特徴 マッチング候補が発生するので,]連しているので,一概に言えない. 対量単体の ID が低い PPF は多数の 時間がかかることがある.

LRF が認識性能に与える影響(実験例)

実験に用いたデータ

使用する特徴量が同じでも、LRF によって性能が左右される.

1-Precision

0.2

0.4

1-Precision

0.6

0

一括算出型	個別	算出型
キーポイント周りの点群の座標 から共分散行列を計算し,その 固有ベクトル群を LRF とする.	3軸をそれぞれ独立(z 軸=キーポイン x 軸=さまざまな	こ算出する. ト周りの法線ベクトル 工夫
	y 軸の	決定方法
Mian, <u>SHOT</u>	最大值選択	方向分布分析
<u>RoPS</u> , EM, TriSl	<u>BOARD</u> , PS Petrelli-LRF	MH DPN, GRF

Mian : Mian の LRF	BOARD : BOrder Aware Repeatable Directions
SHOT : Signature of Histograms of OrienTations	PS : Point Signature
RoPS: Rotational Projection Statistics	Petrelli-LRF : Petrelli らによる LRF (2012年)
EM : Exponential Map	MH : Mesh HoG
TriSI : Tri-Spin-Image	DPN : Dominant Projected Normal
	GRF : Global Reference Frame

※<u>下線</u>は PCL に実装されている手法

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

29

特定物体認識(モデルベース手法)の研究マップ

(参考)橋本研究室における3次元特徴量関連研究

アイデア:入力シーンを予測して特徴点の良否判定

シミュレータを用いてリアリティの高いばら積みシーンを自動生成 物理エンジンには Sketchy Physics を使用

ばら積みシーン (センサ入力を模擬した3次元データ)

さまざまなパターンのばら積み状態をシミュレート

点群密度の差に起因する特徴点の再現性の低下

■ 予備実験

計測距離に起因する点群の密度変化 v.s. 特徴量の再現性

※再現性:2つの特徴ベクトル間の内積値

※Wd=700mm時をモデル(基準)として,遠方から撮影したデータと照合(使用特徴量:SHOT)

基本アイデア

センサからの距離等によって点群の密度は変化するが・・・ 局所領域間の相対点数比は不変

□ 複数の局所領域内に存在する点数の相対関係を利用

複数物体の同時認識

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

35

アイデア: 手がかりから仮説生成 → 大局的に検証

物体の表面の形状をもとに物体をプリミティブ近似し,把持ルール を用いてロボットの動作パラメータを推定する.

プリミティブ形状の種類

プリミティブ近似方法

物体の表面の形状をもとに2段階の処理で物体をプリミティブ近似 前段: 3D-DNNを用いて,表面ごとの面プリミティブの尤度推定 後段: 各尤度を統合することによって立体プリミティブで近似

動作パラメータの推定

プリミティブ近似結果に対して把持ルールを適用することにより ロボットの動作パラメータを生成する.

実験① 物体近似性能評価

各手法のフリミティフ近似の成切率 [%]						
曲家法	End-To-End 3D DNN		提安手法			
	3D ShapeNets	PointNet++				
60.0	75.0	98.0	99.0			
28.0	92.0	94.0	95.0			
78.0	97.0	98.0	98.0			
55.3	87.7	96.7	97.3			
	法のフリ 曲率法 60.0 28.0 78.0 55.3	法のフリミテイフ近似 曲率法 End-To-End 3D ShapeNets 60.0 75.0 28.0 92.0 78.0 97.0 55.3 87.7	法のフリミティフ近似の成功率曲率法End-To-End 3D DNN3D ShapeNetsPointNet++60.075.098.028.092.094.078.097.098.055.387.796.7			

Hashimoto Laboratory, Chukyo University

→ DNN → 円柱

円柱

End-To-End 3D DNN

> DNN

提案手法

さまざまな対象物に対するプリミティブ近似結果

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

43

実験② ロボット把持性能評価

各手法の把持成功率 [%]						
手法 カテゴリ	Agile grasp (SVM)	GPD (DNN)	提案手法			
"直方体"	63.3	73.3	86.7			
"円柱"	76.7	76.7	86.7			
"球"	66.7	70.0	90.0			
平均	68.9	73.3	87.8			

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

実験③ 3種のプリミティブはどのくらい有効か?

- JICFS/IFDB (商品情報データベース)が定義する5カテゴリ
- ShapeNet, ObjectNet, ModelNet, 3Dwarehouse, Thingiverse, および独自に作成したモデル 638 個を用いた.

環境内の各物体の相対的な余裕度をもとに動作生成する

<section-header><complex-block><complex-block><complex-block>

把持余裕度推定モデルによる把持パラメータ推定

把持のしやすさを定量的に算出するために, 3つの指標を統合した確率モデルを構築する.

※ p:把持パラメータ(把持位置,姿勢,開口幅)

把持余裕度推定モデルを用いたP_s(p)の最大化による 最適な把持パラメータ p の推定

 $\widetilde{\mathbf{p}} = \operatorname*{argmax}_{\mathbf{p} \in \mathbb{S}} P_{s}(\mathbf{p})$

S:p の候補集合

予備実験-各相互関係の指標の可視化-

把持パラメータの推定実験の結果

15 シーン中の 47 個の対象物について把持パラメータを推定し、その非 干渉率、把持成功率、処理時間を比較した.

手法	非干涉率[%]	把持成功率[%]	処理時間[s]
Agile_Grasp [Pas 2015]	55	48	5.46
Grasp-Detector [Pint 2017]	64	45	15.0
GPD [Gualtieri 2017]	73	64	3.20
提案手法	91	82	0.42

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

把持パラメータ推定研究マップ

1990	2000	2010		2015	2020
把持安定性評価 Force-Closure [Ohwovoriole80] Force-Closure Grasps [Nguyen88] Optimal Grasps [Ferrari92	Fast Grasp Convex Model Theoretical Model [Mantriota07] Soft Finger Model] [Ciocarlie07]	Based on Flexible Grasp [Harada08] AGPS [Xue09] Physics-Ba	[Harada11] Quadric Surface Approximation [Uto13] ased Grasp [Dogar12]		全周囲モデルベース Voxel, 点群ベース 距離画像ベース 画像ベース
既知物体			類似物体		未知物体
把持パラメータ推定 1111110000000000000000000000000000000	(Heuristics法) 大域形状特徴 Integ GPCS [Berenson07] Obstact 形状再構成 Collision- 7] [K	局所形状特徴 Cloth Grasp Gra [Maitin-Shepard10] (Maitin-Shepard10] (Bergstrom09) e Detection for free Manipulation Bay uehnle09]	Efficient Grasp [Stueckler11] Ispable Feature [Zhang11] Taubin Quadric Fitting [Pas13] Fast Gr [Pas13] Checkout Robot [Klingbeil11] Visual Grasp Planning [Lippiell013] yesian Grasp Planning Superque [Hsiao11] [Fa	Localizing Handle-like Gra Affordance[Pas16] aspability Evaluation [Domae14] Graspable boundary [Ala15] adrics Grasp ria14]	SP Cylindrical Shell の の の の の 例 [Pas16]
把持パラメータ推定	(Learning法) Probab Robotic Grasp Objects [S Lea ヒューマンテ VR-Demo [Aleotti0 Grasp Affordance Human Demo [Gr.	ilistic Models[Glover08] ping of Novel N (axena07] arming to Grasp [Saxena08] デモンストレーションの [Grasp Affordance Der Through [Detry09] Try & Erron Grasp Afford	Heuristicsラベルデータの学習 GP-LVM [Song11] ultimodal Perception Systems Agile-Gr [Marton11] Similar Part-based Grasping [Detry12] Semantic Grasping [Dang12] 学習 nsities Shape Primitive: emplate-Based Learning [Faria13] r [Detry09] Jance Models Non-parametric smoother	Hie DLSR [Trottier16] Real-Time Grasp D asp [Pas15] [Redmon15 DL for Detect Robotic grasps [L Detect Visual G Affordance[Son Dex-Net1.0 [Mahl s Grasp Gripper Po Uncertainty[Jo	rarchical Cascaded Forests [Asif17] etection Deep Learning] Multimodal DCNN GPD ing [Wang16] [Gualtieri17] enz15] Dex-Net2.0 [Mahler17] irasp MGP[Kumra17] CTR [Viereck17] irg16] AF-Net [Do17] PointNetGPD er16] Multimodal Fusion [Liang18] [Kumra17] Dex-Net4.0 Dex-Net3.0 [Mahler18] [Mahler19] se hns16] ContactGrasp [Brahmbhatt19] Eye Deep Semantic VPG [Zeng18] ine16]

Amazon チャレンジへの挑戦履歴

2015年	第1回大会	(シアトル)	世界6位
2016年	第2回大会	(ライプツィヒ)	世界8位
2017年	第3回大会	(名古屋)	世界3位

- 制限時間内に正確にアイテムをピッキングする性能を競う.
- 課題は<u>年々難しくなり</u>,毎回,最先端技術の投入が不可欠.

Amazonチャレンジにおけるビジョンの課題

基本課題

毎年高度になった課題

課題	1年目	2年目	3年目		
タスク	Pickのみ	Pick + Stow	Pick + Stow		
アイテム数	24	39	既知:40個 当日:約100個		
品種の多様さ	一般的な日用品	金属物体, 不定形, 重量物	透明物体, 大きな物体		
時間制限	20分	15分	15分		
棚の制約	事前位置決め可	自動位置決め要	自由な設計可		
Hashimoto Laboratory, Chukyo University RSJ ロボット工学セミナー May 29, 2019					

ARC2017 アイテムリスト(事前配布)

53

ARC2017 アイテムリスト(認識・把持が難しい事例)

特徴(テクスチャ)が少ない

3D センサで撮影できない

吸着が困難

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

小さい

55

ARC2017 アイテムリスト(当日配布物の例)

<mark>白い手袋</mark> 非剛体のため 多様な見え方が生じる

子供用ストロー全体的に細く吸着が困難

ケーキ皿 金属のためサチりやすく 3D センサでも撮影が困難

ラチェット式荷締めベルト 重く,隙間も多いため 吸着が困難

<mark>水槽用砂利</mark> 中身が動くため多様な見 え方が生じる

プラスチック製グラス 3Dデータ取得が困難

ブラシ 隙間が多く吸着が困難

同一形状・異サイズ対象物の認識

形状カテゴリが同一で, サイズのみが異なる対象物体が少なくない

「面」に着目した仮説検証型アルゴリズム

	認識率 (認識に成功した個数/ 実験に使用した個数)
サンドイッチ A	92%(46 個 /50 個)
サンドイッチ B	84%(42 個 /50 個)
サンドイッチ C	80%(40 個 /50 個)
サンドイッチ D	82%(41 個 /50 個)
サンドイッチ E	94%(47 個 /50 個)
プラスチックカップ A	84%(42 個 /50 個)
プラスチックカップ B	78%(39個/50個)
プラスチックカップ C	78%(39 個 /50 個)
プラスチックカップ D	80%(40個/50個)
プラスチックカップ E	70%(35個/50個)

鈴木貴大,橋本学,大西剛史,藤吉弘亘,部分的なサイズ変動を許容できる多面体の位置姿勢認識手法の提案,DIA2019,2019/03/08.

お茶会ロボットのタスク

日用品が"形"として持っている機能の例

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

61

機能の発現に影響を与える主な要因

機械学習ベースの機能認識

前提: 本研究では,機能をシンボルとして扱う.

Step1:局所的な凹凸情報をもとに、その点が持つ機能属性を仮推定 Step2:さらに大域的な解釈により、パーツごとの機能属性を決定

2段階処理による機能認識の高信頼化

飯塚正樹,秋月秀一,橋本学,物体形状を考慮したdenseCRFによる機能属性認識の高精度化,電気学会論文誌C, Vol.138, No.9, pp.1088-1093, 2018.

機能認識の結果

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

65

機能認識の評価実験結果

評価実験に用いた 6 手法

仮ラベル推定方法

		Random Forests	CNN
法	最適化無し	RFs (w/o dense CRF)	CNN (w/o dense CRF)
適化方	dense CRF による最適化有	RFs +	CNN +
	(RGB のみ利用)	2D dense CRF	2D dense CRF
過	dense CRF による最適化有	RFs +	CNN +
	(3D 形状を考慮した提案モデル)	3D dense CRF	3D dense CRF

各手法の機能属性認識率

認識手法	RFs (w/o dense CRF)	RFs + 2D dense CRF	RFs + 3D dense CRF (Ours)	CNN (w/o dense CRF)	CNN + 2D dense CRF	CNN + 3D dense CRF (Ours)
認識率	62.4	73.2	77.0	78.1	79.0	80.2

2 種類の仮ラベル推定法に共通して,提案モデルである 3D dense CRF を用いた認識率が最も高い結果となった.

Masaki Iizuka, Manabu Hashimoto, Detection of Semantic Grasping-Parameter using Part-Affordance Recognition, The 19th International Conference on Research and Education in Mechatronics (REM2018), pp.136-140, DOI:10.1109/REM.2018.8421780, The Hague University of Applied Sciences, 2018/6/8.

"機能"の利用 動作パラメータ自動設定

寺沢拓真,飯塚正樹,橋本学,日用品の機能ラベル情報を利用したロボット動作の部分的生成,動的画像処理実利用化ワークショップ(DIA2019), IS2-19 pp.340-345, 2019/03/08.

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

69

お茶会ロボットシステムの試作

CEATEC Japan 2018

お茶会ロボットに使われた技術・開発環境

ロボットビジョン利用拡大のための課題

【認識】

- 1. 認識の汎用化(モデルレス)
 - 2D/3Dの役割分担
- 2. 機械学習ベース認識の精度向上(実用レベル)
 - 統計データに基づく学習用データ生成

【ロボットとの連携】

- 3. タスク生成・動作生成の自動化・半自動化
 - 類似部品のロボット動作生成の簡素化(段取り作業低減)
 - 「要求」から「ロボットタスク」へのブレークダウン
- 4. ロボットのためのビジョン, ビジョンのためのロボット
 - ビジュアルフィードバックによるタスクの完遂
- 5. イレギュラー事象対応(突発的失敗の自覚と対処法生成)

Hashimoto Laboratory, Chukyo University

RSJ ロボット工学セミナー May 29, 2019

Thank you for your attention!